Export
Refer to the TypeScript reference page for information about the types and interfaces referenced below.
Use the formatQuery
function to export queries in various formats. The function signature is:
function formatQuery(
query: RuleGroupTypeAny,
options?: ExportFormat | FormatQueryOptions
): string | ParameterizedSQL | ParameterizedNamedSQL | RQBJsonLogic;
formatQuery
converts a given query object into one of the following formats:
- Formatted
JSON.stringify
result - Unformatted
JSON.stringify
result with allid
andpath
properties removed - SQL
WHERE
clause - Parameterized SQL, anonymous parameters
- Parameterized SQL, named parameters
- MongoDB
- Common Expression Language (CEL)
- Spring Expression Language (SpEL)
- JsonLogic
- ElasticSearch
- JSONata
- Natural language
For the next few sections (unless otherwise noted), assume the query
variable has been defined as:
const query: RuleGroupType = {
id: 'root',
combinator: 'and',
not: false,
rules: [
{
id: 'rule1',
field: 'firstName',
operator: '=',
value: 'Steve',
},
{
id: 'rule2',
field: 'lastName',
operator: '=',
value: 'Vai',
},
],
};
TL;DR: For best results, use the default combinators and operators or map your custom combinators/operators to the defaults with
transformQuery
.
While formatQuery
technically accepts query objects of type RuleGroupTypeAny
(i.e., RuleGroupType
or RuleGroupTypeIC
), it is not guaranteed to process a query correctly unless the query also conforms to the type DefaultRuleGroupTypeAny
(i.e., DefaultRuleGroupType
or DefaultRuleGroupTypeIC
).
In practice, this means that all combinator
and operator
properties in the query must match the name
of an element in defaultCombinators
or defaultOperators
, respectively. If you implement custom combinator and/or operator names, you can use the transformQuery
function to map your query properties to the defaults.
For example, assume your implementation replaces the default "between" operator ({ name: "between", label: "between" }
) with { name: "b/w", label: "b/w" }
. Any rules using this operator would have operator: "b/w"
instead of operator: "between"
. So if a query looked like this...
{
"combinator": "and",
"rules": [
{
"field": "someNumber",
"operator": "b/w",
"value": "12,14"
}
]
}
...you could run it through transformQuery
with the operatorMap
option:
const newQuery = transformQuery(query, { operatorMap: { 'b/w': 'between' } });
/*
{
"combinator": "and",
"rules": [
{
"field": "someNumber",
"operator": "between",
"value": "12,14"
}
]
}
*/
The newQuery
object would be ready for processing by formatQuery
, including special handling of the "between" operator.
Basic usage
JSON
To export the internal query representation (like what react-querybuilder
passes to the onQueryChange
callback) formatted by JSON.stringify
, simply pass the query to formatQuery
:
formatQuery(query);
// or
formatQuery(query, 'json');
The output will be a multi-line string representation of the query using 2 spaces for indentation.
`{
"id": "root",
"combinator": "and",
"not": false,
"rules": [
{
"id": "rule1",
"field": "firstName",
"value": "Steve",
"operator": "="
},
{
"id": "rule2",
"field": "lastName",
"value": "Vai",
"operator": "="
}
]
}`;
JSON without identifiers
To export the internal query representation without formatting (single-line, no indentation) and without any id
or path
attributes, use the "json_without_ids" format. This can be useful for serializing the query for persistent storage.
formatQuery(query, 'json_without_ids');
Output:
`{"combinator":"and","not":false,"rules":[{"field":"firstName","value":"Steve","operator":"="},{"field":"lastName","value":"Vai","operator":"="}]}`;
SQL
To export a SQL WHERE
clause, use the "sql" format. The output should be largely compatible with major RDBMS engines, but may require configuration in some cases. See presets for more details about known compatibility issues.
formatQuery(query, 'sql');
Output:
`(firstName = 'Steve' and lastName = 'Vai')`;
Parameterized SQL
To export a SQL WHERE
clause with bind variables instead of inline values, use the "parameterized" format. The output is an object with sql
and params
attributes.
formatQuery(query, 'parameterized');
Output:
{
"sql": "(firstName = ? and lastName = ?)",
"params": ["Steve", "Vai"]
}
Named parameters
If anonymous parameters (aka bind variables) are not acceptable, formatQuery
can name each parameter based on the field name when the "parameterized_named" format is used. The output object is similar to the "parameterized" format, but the params
attribute is an object instead of an array.
formatQuery(query, 'parameterized_named');
Output:
{
"sql": "(firstName = :firstName_1 and lastName = :lastName_1)",
"params": {
"firstName_1": "Steve",
"lastName_1": "Vai"
}
}
See also: paramPrefix
and generating parameter names.
MongoDB
MongoDB-compatible query objects can be produced as a JSON object or as a string
. The "mongodb_query" format will produce a JSON object and is the recommended format. The "mongodb" format is merely a JSON.stringify
'd version of the "mongodb_query" format.
The "mongodb_query" export format was introduced, and the "mongodb" format was deprecated, in version 8.1.0.
formatQuery(query, 'mongodb_query');
Output:
{ "$and": [{ "firstName": "Steve" }, { "lastName": "Vai" }] }
The MongoDB export formats do not support the inversion operator (setting not: true
for a rule group). However, rules can be created using the "!="
operator.
Common Expression Language
For Common Expression Language (CEL) output, use the "cel" format.
formatQuery(query, 'cel');
Output:
`firstName = "Steve" && lastName = "Vai"`;
Spring Expression Language
For Spring Expression Language (SpEL) output, use the "spel" format.
formatQuery(query, 'spel');
Output:
`firstName == 'Steve' and lastName == 'Vai'`;
JsonLogic
The "jsonlogic" format produces an object that can be processed by the JsonLogic apply
function (see https://jsonlogic.com/).
formatQuery(query, 'jsonlogic');
Output:
{ "and": [{ "==": [{ "var": "firstName" }, "Steve"] }, { "==": [{ "var": "lastName" }, "Vai"] }] }
Before using JsonLogic's apply()
method to apply the result of formatQuery(query, 'jsonlogic')
, register the additional operators startsWith
and endsWith
exported from react-querybuilder
. These are not standard JsonLogic operations, but they correspond to the "beginsWith" and "endsWith" operators, respectively, from react-querybuilder
.
The most future-proof way to do this is to loop through the jsonLogicAdditionalOperators
entries like below. This way, if any more custom operators are added in the future they will be automatically available.
import { add_operation, apply } from 'json-logic-js';
import { jsonLogicAdditionalOperators } from 'react-querybuilder';
for (const [op, func] of Object.entries(jsonLogicAdditionalOperators)) {
add_operation(op, func);
}
apply({ startsWith: [{ var: 'firstName' }, 'Stev'] }, data);
ElasticSearch
The "elasticsearch" format produces an object that can be processed by ElasticSearch.
formatQuery(query, 'elasticsearch');
Output:
{ "bool": { "must": [{ "term": { "firstName": "Steve" } }, { "term": { "lastName": "Vai" } }] } }
JSONata
For JSONata filters, use the "jsonata" format. Use the parseNumbers
option to ensure that numeric values are rendered as numbers in the output since JSONata does not automatically cast strings to numbers.
formatQuery(query, { format: 'jsonata', parseNumbers: true });
Output:
`firstName = "Steve" and lastName = "Vai"`;
Since React Query Builder does not have an official way to determine when values should be treated as dates or date-like strings, we recommend implementing a custom rule processor to handle date rules when exporting to JSONata. The example below has no error checking or validation (among other issues), but it can be a good starting point.
const customRuleProcessor: RuleProcessor = (rule, options) => {
// `datatype` is a non-standard property of the field, used for this example only.
// Replace this condition with your own logic to determine if the value is a date.
if (options?.fieldData?.datatype === 'date') {
return `$toMillis(${rule.field}) ${rule.operator} $toMillis("${rule.value}")`;
}
return defaultRuleProcessorJSONata(rule, options);
};
Natural language
To produce a natural language query, use the "natural_language" format. Use the getOperators
and fields
options to render field and operator labels instead of values.
formatQuery(query, {
format: 'natural_language',
parseNumbers: true,
getOperators: () => defaultOperators,
fields: [
{ value: 'firstName', label: 'First Name' },
{ value: 'lastName', label: 'Last Name' },
{ value: 'age', label: 'Age' },
],
});
Output:
`First Name is 'Steve', and Last Name is "Vai", and Age is between 26 and 52`;
Configuration
An object can be passed as the second argument instead of a string to have more fine-grained control over the output.
Parse numbers
To render values as numbers instead of quoted strings when possible, set the parseNumbers
option to true
. See Number parsing for more details and advanced options.
Rule processor
To customize the output for individual rules, use the ruleProcessor
configuration option. Rules will only be passed to the provided processor function if they first pass validation. The function will be called like this:
ruleProcessor(rule, { escapeQuotes, fieldData, ...otherOptions });
The first argument is the RuleType
object from the query. The second argument is a ValueProcessorOptions
object. escapeQuotes
is true
or false
when appropriate as determined by the internal formatQuery
logic (generally speaking, quotes are escaped for string values and not escaped otherwise—as when values represent field names). fieldData
is the corresponding Field
object from the fields
array if it was passed to formatQuery
. Other options are copied directly from the formatQuery
options, or the default value if not specified.
The default rule processors for each format are available as exports from react-querybuilder
:
defaultRuleProcessorCEL
defaultRuleProcessorElasticSearch
defaultRuleProcessorJSONata
defaultRuleProcessorJsonLogic
defaultRuleProcessorMongoDB
defaultRuleProcessorMongoDBQuery
defaultRuleProcessorSpEL
defaultRuleProcessorSQL
defaultRuleProcessorParameterized
Refer to the source code for each to determine the appropriate return type for a custom rule processor.
You can use the appropriate default rule processor as a fallback so your custom rule processor doesn't have to cover all cases, as shown below.
const query: RuleGroupType = {
combinator: 'and',
not: false,
rules: [
{ field: 'firstName', operator: 'has', value: 'S' },
// non-standard operator ^^^^^
{ field: 'lastName', operator: '=', value: 'Vai' },
],
};
const customRuleProcessor: RuleProcessor = (rule, options) => {
// The "has" operator is not handled by the default processor
if (rule.operator === 'has') {
return { in: [rule.value, { var: rule.field }] };
}
// Defer to the default processor for all other operators
return defaultRuleProcessorJsonLogic(rule, options);
};
formatQuery(query, { format: 'jsonlogic', ruleProcessor: customRuleProcessor });
/*
{
and: [
{ in: ["S", { var: "firstName" }] },
{ "==": [{ var: "lastName" }, "Vai"] }
]
}
*/
This SQL example (using Oracle syntax) demonstrates the generation of a case-insensitive condition:
// `query` is the same as in the previous example
const customRuleProcessor: RuleProcessor = (rule, options) => {
if (rule.operator === 'has') {
return `UPPER(${rule.field}) LIKE UPPER('%${rule.value}%')`;
}
return defaultRuleProcessorSQL(rule, options);
};
formatQuery(query, { format: 'sql', ruleProcessor: customRuleProcessor });
/*
"(UPPER(firstName) LIKE UPPER('%S%') and lastName = 'Vai')"
^------------custom--------------^ ^------default-----^
*/
Generating parameter names
The "parameterized" and "parameterized_named" formats require rule processors to return an object that closely resembles the return type of formatQuery
itself for these formats. A utility function getNextNamedParam
is provided to help generate unique parameter names. The example below is effectively the same as the Oracle SQL example above, but using the "parameterized_named" format.
const customRuleProcessor: RuleProcessor = (rule, options) => {
if (rule.operator === 'has') {
// TIP: `getNextNamedParam` can be called multiple times in case your SQL
// requires multiple unique parameters. Each call will generate a new name.
const paramName = options.getNextNamedParam!(rule.field);
return {
sql: `UPPER(${rule.field}) LIKE UPPER('%' || ${options.paramPrefix}${paramName} || '%')`,
params: { [paramName]: rule.value },
};
}
return defaultRuleProcessorSQLParameterized(rule, options);
};
formatQuery(query, { format: 'parameterized_named', ruleProcessor: customRuleProcessor });
/*
{
sql: "(UPPER(firstName) LIKE UPPER('%' || :firstName_1 || '%') and lastName = :lastName_1)",
params: {
firstName_1: "S",
lastName_1: "Vai"
}
}
*/
Value processor
valueProcessor
accepts the same arguments as ruleProcessor
, but only affects the "value" portion of the output (to the right of the operator) for the "sql" format. If both options are provided, ruleProcessor
takes precedence.
For all formats except "sql", valueProcessor
is merely a synonym for ruleProcessor
. We recommend using ruleProcessor
unless you are exporting SQL and only need to customize the value portion of the output.
// `query` is the same as in the previous example
const customValueProcessor: ValueProcessorByRule = (rule, options) => {
if (rule.operator === 'has') {
return `'%${rule.value}%'`;
}
return defaultValueProcessorByRule(rule, options);
};
formatQuery(query, { format: 'sql', valueProcessor: customValueProcessor });
/*
"(firstName like '%S%' and lastName = 'Vai')"
^---default---^ ^---^-custom ^--default--^
*/
Legacy valueProcessor
behavior
The legacy valueProcessor
signature exists for backwards compatibility, but we recommend avoiding it. For one reason, the options are not passed in so it becomes more difficult to correctly fall back to a default processor.
If the function assigned to valueProcessor
accepts three or more arguments (not including those with default values), it will be called like this:
valueProcessor(field, operator, value, valueSource);
Notice that no options or additional properties of the rule are passed as arguments. Among other problems, this prevents formatQuery
from setting the escapeQuotes
option.
This legacy behavior is documented here for completeness but, as stated above, is not recommended.
const query: RuleGroupType = {
combinator: 'and',
not: false,
rules: [
{ field: 'instrument', operator: 'in', value: ['Guitar', 'Vocals'] },
{ field: 'lastName', operator: '=', value: 'Vai' },
],
};
const customValueProcessor = (field, operator, value) => {
if (operator === 'in') {
// Assuming `value` is an array, such as from a multi-select
return `(${value.map(v => `'${v.trim()}'`).join(',')})`;
}
return defaultValueProcessor(field, operator, value);
};
formatQuery(query, { format: 'sql', valueProcessor: customValueProcessor });
/*
"(instrument in ('Guitar','Vocals') and lastName = 'Vai')"
*/
Versions of the default value processors using the newer fn(rule, options)
signature as well as the legacy signature are available for all query language formats except "jsonlogic" (use ruleProcessor
instead).
- Current signature (recommended):
defaultValueProcessorByRule
(for all SQL-based formats)defaultValueProcessorCELByRule
defaultValueProcessorMongoDBByRule
defaultValueProcessorSpELByRule
- Legacy signature:
defaultValueProcessor
(for all SQL-based formats)defaultMongoDBValueProcessor
defaultCELValueProcessor
defaultSpELValueProcessor
Quote field names
Some database engines wrap field names in backticks (`
) or square brackets ([]
). This can be configured with the quoteFieldNamesWith
option which can be assigned a string or an array of two strings.
formatQuery(query, { format: 'sql', quoteFieldNamesWith: '`' });
/*
"(`firstName` = 'Steve' and `lastName` = 'Vai')"
*/
formatQuery(query, { format: 'sql', quoteFieldNamesWith: ['[', ']'] });
/*
"([firstName] = 'Steve' and [lastName] = 'Vai')"
*/
Field identifier chains
To quote members of field identifier chains independently, use fieldIdentifierSeparator
. A common value is "."
.
In this example, assume the field names are musicians.firstName
and musicians.lastName
.
formatQuery(query, {
format: 'sql',
quoteFieldNamesWith: ['[', ']'],
fieldIdentifierSeparator: '.',
});
/*
"([musicians].[firstName] = 'Steve' and [musicians].[lastName] = 'Vai')"
*/
Quote values
Some database engines can accept string literals in double quotes ("
). This can be configured with the quoteValuesWith
option which should be assigned a one-character string.
formatQuery(query, { format: 'sql', quoteValuesWith: '"' });
/*
"(firstName = "Steve" and lastName = "Vai")"
*/
Parameter prefix
If the "parameterized_named" format is used, configure the parameter prefix used in the sql
string with the paramPrefix
option, should the default ":"
be inappropriate.
const p = formatQuery(query, {
format: 'parameterized_named',
paramPrefix: '$',
});
/*
p.sql === "(firstName = $firstName_1 and lastName = $lastName_1)"
// ^^^ ^^^
*/
Retain parameter prefixes
paramsKeepPrefix
simplifies compatibility with SQLite. When used in conjunction with the "parameterized_named" format, the keys of the params
object will maintain the paramPrefix
string as it appears in the sql
string (e.g. { "$param_1": "val" }
instead of { "param_1": "val" }
).
Numbered parameters
For the "parameterized" format, all parameter placeholders in the generated SQL are "?" by default. When the numberedParams
option is true
, placeholders will instead be a numbered index beginning with 1
, incrementing by 1 from left to right. Each placeholder number will be prefixed with the configured paramPrefix
string (default ":"
).
const p = formatQuery(query, {
format: 'parameterized',
paramPrefix: '$',
numberedParams: true,
});
/*
p.sql === "(firstName = $1 and lastName = $2)"
*/
Previously, some manual post-processing was necessary to achieve the same effect.
Concatenation operator
Most SQL database dialects use the ||
operator to concatenate strings. SQL Server uses +
, and MySQL does not have a concatenation operator—the CONCAT
function is used instead.
To configure the concatenation operator (used for the "contains", "beginswith", and "endswith" operators when valueSource
is "field"), use the concatOperator
option. formatQuery
uses the ANSI standard ||
by default so this is not usually necessary.
If the value is "CONCAT"
(case-insensitive), the CONCAT
function will be used. (Note that Oracle SQL does not support more than two values in the CONCAT
function, so this option should not be used in that context. The default operator ||
is already compatible with Oracle SQL.)
const query = {
combinator: 'and',
rules: [
{ field: 'firstName', operator: '=', value: 'Kris' },
{ field: 'lastName', operator: 'beginswith', value: 'firstName', valueSource: 'field' },
],
};
formatQuery(query, { format: 'sql', concatOperator: '+' });
/*
"(firstName = 'Kris' and lastName like firstName + '%')"
*/
formatQuery(query, { format: 'sql', concatOperator: 'CONCAT' });
/*
"(firstName = 'Kris' and lastName like CONCAT(firstName, '%'))"
*/
Presets
The preset
option configures options known to enable (or at least improve) compatibility with particular query language dialects. Individual options will override their respective preset values. The following presets are available:
Dialect | Preset options |
---|---|
'ansi' | N/A |
'sqlite' | paramsKeepPrefix: true |
'oracle' | N/A |
'mssql' | quoteFieldNamesWith: ['[', ']'] , concatOperator: '+' , fieldIdentifierSeparator: '.' |
'mysql' | concatOperator: 'CONCAT' |
'postgresql' | quoteFieldNamesWith: '"' , numberedParams: true , paramPrefix: '$' |
formatQuery(query, { format: 'parameterized', preset: 'postgresql' });
/*
{
sql: `("firstName" like $1 and "lastName" in ($2, $3))`,
params: ['Stev%', 'Vai', 'Vaughan']
}
*/
formatQuery(query, { format: 'sql', preset: 'mssql' });
/*
"([musicians].[firstName] = 'Kris' and [musicians].[lastName] like [musicians].[firstName] + '%')"
*/
Fallback expression
The fallbackExpression
is a string that will be part of the output when formatQuery
can't quite figure out what to do for a particular rule or group. The intent is to maintain valid syntax while (hopefully) not detrimentally affecting the query criteria. If not provided, the default fallback expression for the given format will be used:
Format | Default fallbackExpression |
---|---|
'sql' | '(1 = 1)' |
'parameterized' | '(1 = 1)' |
'parameterized_named' | '(1 = 1)' |
'mongodb' | '{"$and":[{"$expr":true}]}' |
'mongodb_query' | '{"$and":[{"$expr":true}]}' |
'cel' | '1 == 1' |
'spel' | '1 == 1' |
'jsonata' | '(1 = 1)' |
'jsonlogic' | false |
'elasticsearch' | {} |
Value sources
When the valueSource
property for a rule is set to "field", no parameters will be generated.
const pf = formatQuery(
{
combinator: 'and',
rules: [
{ field: 'firstName', operator: '=', value: 'lastName', valueSource: 'field' },
{ field: 'firstName', operator: 'beginsWith', value: 'middleName', valueSource: 'field' },
],
},
'parameterized_named'
);
Output:
{
"sql": "(firstName = lastName and firstName like middleName || '%')",
"params": {}
}
Placeholder values
Any rule where the field
or operator
matches the placeholder value (default "~"
) will be excluded from the output for most export formats (see Automatic validation). To use a different string as the placeholder value, set the placeholderFieldName
and/or placeholderOperatorName
options. These correspond to the fields.placeholderName
and operators.placeholderName
properties on the main component's translations
prop object.
Validation
The validation options (validator
and fields
– see Validation for more information) only affect the output when format
is not "json" or "json_without_ids". If the validator
function returns false
, the fallbackExpression
will be returned. Otherwise, groups and rules marked as invalid (either by the validation map produced by the validator
function or the result of the field-based validator
function) will be ignored.
Example:
const query: RuleGroupType = {
id: 'root',
rules: [
{ id: 'r1', field: 'firstName', value: '', operator: '=' },
{ id: 'r2', field: 'lastName', value: 'Vai', operator: '=' },
],
combinator: 'and',
not: false,
};
// Example 1
// Query is invalid based on the validator function
formatQuery(query, {
format: 'sql',
validator: () => false,
});
/*
"(1 = 1)" <-- see `fallbackExpression` option
*/
// Example 2
// Rule "r1" is invalid based on the validation map
formatQuery(query, {
format: 'sql',
validator: () => ({ r1: false }),
});
/*
"(lastName = 'Vai')" <-- skipped `firstName` rule with `id === 'r1'`
*/
// Example 3
// Rule "r1" is invalid based on the field validator for `firstName`
formatQuery(query, {
format: 'sql',
fields: [{ name: 'firstName', validator: () => false }],
});
/*
"(lastName = 'Vai')" <-- skipped `firstName` rule because field validator returned `false`
*/
Automatic validation
To minimize the chance of invalid syntax, some basic validation will be performed by formatQuery
for the "in", "notIn", "between", and "notBetween" operators for all formats except "json" and "json_without_ids", even if no validator function or field validators are specified.
- Rules with an
operator
of "in" or "notIn" will be deemed invalid if the rule'svalue
is neither an array with at least one element (value.length > 0
) nor a non-empty string. - Rules with an
operator
of "between" or "notBetween" will be deemed invalid if the rule'svalue
is neither an array with length of at least two (value.length >= 2
) nor a string with at least one comma that isn't the first or last character (value.split(',').length >= 2
, and neither element is an empty string). - Rules where either the
field
oroperator
match their respective placeholder will be deemed invalid (field === placeholderFieldName || operator === placeholderOperatorName
).